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Based on some classic experiments1, 2, 3, the lifetime of the muon is investigated using a 

scintillation method, with coincidence counting. Passing muons from cosmic showers 

that are stopped in the scintillator decay and their decay times measured in time bins of 

width w=0.1009±0.0018s . However, due to the capture rate of negative muons in the 

scintillator, and the non-unity ratio between positive and negative muons, the decay curve 

is not a simple exponential, but a double exponential distribution. Having collected data 

over about 600 hours, a nonlinear fit was made and the value of the lifetime along with its 

numerical error due to the numerical method determined. Using a linear fit of the simple 

single-exponential approximation of the decay, the errors due to  physical sources was 

also ascertained. These give the value of the muon lifetime in vacuum as

0=2.197±0.006±0.036 s . 

1. Introduction

Discovered by Neddermeyer and Anderson, and Street and Stevenson in 19374, the muons 

have become an important in high energy physics explaining the electroweak theory5. Their presence at 

sea level also demonstrates the validity of special relativity. Being created in the upper atmosphere, 

they speed towards the earth's surface near the speed of light as they decay with a lifetime much shorter 

than the time it takes for them to reach the surface. Yet their detection indicates the effects of time 

dilation such that their decay is slowed down as they travel at high speeds.
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Muons are created when cosmic showers hit the upper atmosphere of the earth. When a 

high speed proton collides with a nucleus, it produces a myriad of mesons, some of them positive and 

negative pions. These pions subsequently decay to form the muons and neutrinos (see Figure 1.1)

Muons can decay via a few paths, but almost all of them decay into an electron and two neutrinos7, 8 

according to Equation 1.1.

+ e+e

−e−e
(1.1)

The neutrinos are produced according to lepton number conservation. Due to the difference in the 

number of positive and negative pions in the atmosphere, the ratio of positive to negative muons is also 

not unity. As described by Dorman9, its value depends on the momentum of the muons by the equation

=N + /N – =1.268±0.0080.0002p (1.2)

where p is measured in GeV. For this experiment, since only muons that have stopped have their 

decays detected, it is assumed that p = 0 here. 
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Figure 1.1: Cosmic ray shower as muon source in the atmosphere6



2. Description of Apparatus

The muons are detected using 9 flat plastic scintillators sheets, each connected to a 

photomultiplier tube (PMT) to detect the scintillation that occurs when the plastic is excited10. This 

happens when muons pass through the scintillator, or when a muon that has stopped in the scintillator 

undergoes decay and emits an electron. The photomultipliers (PMs) are powered by two synchronized 

Hewlett Packard Harrison 6516A DC Power Supply JIO, operating at 0-3500V and 0-5MA. They are 

connected to the LeCroy Research Systems, Model 121 Discriminator, that counts the occurrances of 

the aforementioned two events. When the scintillator is activated, the PMs send out a negative pulse, 

which is passed through a comparator and converted to a positive square pulse. This helps to 

distinguish an excitation from the background electronic noise intrinsic in the scintillator and circuit. 

The circuit is set up to attempt to detect series of two pulses, using coincidence counting 

techniques, further elaborated by Leo11 and Melissinoss12. When a muon passes through the scintillator, 

and ultimately generates the square pulse, Scaler 1, a set of LEDs, increments its count. After about 

0.5µs, a timer, running off a 10MHz clock, is then started to wait for the detection of the second pulse 

This could be from the decay of a stopping muon or from the background. The timer increments at 

every clock cycle for up to 250 cycles. If the second pulse is detected, Scaler 2, another set of LEDs, 

increments its count, and a signal is sent to the serial interface of the IBM Personal Computer XT. 

This signal tells during which of the 250 cycles the second pulse was detected. The 

observed duration after the first pulse, is thus divided into 250 time bins of roughly 0.1µs in width. If 

the pulse is due to a decay electron, that would contribute to the exponential curve, but if its due to 

another muon passing through the scintillator within 2.5µs of the first, or some other excitations, then 

that would contribute to the background.

Calibration is required for the voltage to the Pms, for reasons explained by Leo10. If the 
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voltage is too low, the PMs would not be sensitive enough to detect all excitations in the scintillators. If 

the voltage is too high, then noise from the equipment would drastically increase the counts causing a 

serious systematic error. Measuring Scaler 1 counts with respect to PM voltage gives rise to Figure E.1. 

The insensitive part occurs before the plateau and the over-amplified portion after. The best operating 

voltage is at the middle of the plateau, which is estimated, from Figure E.2, to be 1.005V for the 

present set-up.

It should be noted that due to the charge of the negative muons, they can approach quite 

closely to the nuclei with appreciably large atomic numbers5, 8, 13, 14, 15. In the case of plastic scintillators 

which are mainly composed of carbon atoms, the negative muons can get close enough to the carbon 

nuclei to bond with them, forming boron nuclei and a neutrino as described in Equation 2.1.

−C  B (2.1)

Eventually, the boron would decay into a carbon atom and electron which would contribute to the 

background. This does not happen for positive muons due to electrostatic repulsion from the nuclei.

3. Theory

Assuming that the rate of decay is constant, a single decay process is defined by 

dN
dt

=−N (3.1)

where  is the rate of decay, related to the lifetime by =1 / , and N is the instantaneous number of 

particles . Integrating this with respect to time gives the relation

N=N 0 e− t (3.2)

where N0 is the initial particle count. Within the time interval ( t , t t ) the number of particles that 

decay are
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N=∣∫t

tt dN
dt

dt∣=∣[N 0 e− t ]t
t t∣

=N 0 e− t 1−e− t ≈N 0 e− t1−1 t 
=N 0 e−t t (3.3)

Equation 3.3 holds for positive muons, but not for negative muons because of Equation 2.1. Due to this 

nuclear capture, there is a capture rate associated with negative muons, such that its decay becomes

N−=N 0 e−c t e− t=N 0 e−c t (3.4)

where c is the capture rate due to muon loss through bonding. Mukhopadhyay et al combines results 

from several observations to arrive at the value10

c=3.76±0.04×104 s−1 (3.5)

Since the counts are contributed to by the decays of the positive and negative, and the 

background, its decay is

N t =N bg N e− t− N− e−−t w (3.6)

where there is a notational change of w= t ; + and N + are the decay rate and number of positive 

muons, while − and N− are the decay rate and number of negative muons, respectively. It has been 

experimentally noted that positive and negative muons do not exist equally in the atmosphere and their 

ratio depends on their momentum and the altitude6, 12. Substituting Equations 1.2 into 3.6 gives

N n=N bg
N 0 w
1

e−0 w n[0e−c w nc e−c w n] (3.7)

where 0=+ is the lifetime in free space, of which the positive muons maintain, and =N + /N – is the 

muon ratio. Here wn = t, considering time split into n time bins with width w.

If sufficient data is collected, it can be fitted to Equation 3.7 with parameters N bg , N 0 and

0 . Otherwise, the exponentials would have to be approximated to a single one. Starting with Equation 

3.6, and taking Taylor expansions, one can derive Equation 3.8, the effective single exponential decay.
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N i−N bg=N + e−0 t 1


N e−0c t

=N +e−0 t11


e−c t
≈N + e−0 t[11


1−c t ]

=N + e−0 t[11
− 1


c t]

=N +1 1
e−0 t1− c

1
t

≈N +11
e−0 t e

− c

1
t

=N +11
e

−0
c

1t
(3.8)

We differentiate Equation 3.8 to map it to the data.

N i

 t
≈∣dN i

dt ∣=N +11
0

c

1e−0
c

1t

N i=N +11
0

c

1e
−0

c

1t

 t

=N +11
0

c

1e
−0

c

1t
w (3.9)

Thus the effective lifetime is eff =1/eff , where eff=0
c

1
, from which the lifetime in empty 

space can be estimated. Equation 3.8 can be rewritten in linear form as

ln N i ' =ln N 0 ' −eff t (3.10)

where N i '=N i−N bg and N 0 '=N + 11/0c /1 .

4. Data

Data was collected over about 600 hours with 4 samples, their durations noted along with 

the Scaler 1 and 2 counts at the end of each run. The times between scintillator pulses are recorded in 
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text files labeled by dates, as shown in Table 4.1. Printouts of the data files are in Appendix B.

Due to overflow, the scaler 2 counts are lower than expected, but the actual value can be 

retrieved by knowing the overflow rate. However, this is not important, as the values can be obtained 

from summing the counts recorded in each data file. Since Scaler 2 has only 4 digits, it has a significant 

overflow rate, which when accounted for reveals a discrepancy between the recorded second pulses by 

the computer and by the circuit, possibly due to some circuitry unreliability. In each data file, the muon 

count during decay is distributed into 255 time bins of about 0.1µs.

Run 1 2 3 4
Duration (s) 423399 ± 1 153504 ± 1 1036965 ± 1 536912 ± 1

Scaler 1 reading, S1 10032301 3614150 25081541 12881573
Scaler 2 reading 8491 6302 6976 9851
Scaler 2 count, S2 45580 16262 116645 59670

Data file oct12.txt oct14.txt oct26.txt nov01.txt
                Table 4.1: Data collected

5. Data Analysis

To work out the lifetime with respect to time, t, the time bin independent variable, n, has to 

be scaled with the bin width, w, which has to be determined. This is be calculated by counting the 

number of scintillator excitations in the background of the decay. It is assumed that this background is 

contributed to by the flux of muons passing through the scintillator F = S1/T, where S1 is the Scaler 1 

count after the duration, T, of an experiment run. Fitting the line T=1/F S 1 to Table 4.1, and finding 

the slope, using the technique of weighted least squares described in Appendix A, gets F=24.3396 Hz, 

with negligible error since the error in T is extremely small. Choosing time bins 160 to 190, for which 

to consider the background contribution, sets the bin count nB = 31, and the excitation count Nbg = 3985. 

Each time a muon passes through the scintillator, a gate opens to wait for the second PM pulse, either 
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due to the decay electron or background muon. In the total duration T, this happens S1 number of times. 

In the time t = nBw, there should be Ft muons passing through the scintillator, where nB is the number of 

bins considered for the background. So, for the whole experiment, the number of counts due to 

background is N B=F t S1=F 2 nB w /T . Rearranging would give the expression for the width of the time 

bins

w=
N B

F 2T nB
(4.1)

With 238157 counts during decay, the data is of a high enough quality to attempt a 

nonlinear fit17 to the explicit form of Equation 3.7, with the substitution 0=1/0

N n=N bg
N 0 w
1

e
−w n

0 [ 1
0

e−c w nc e−c w n] (4.2)

This is done via the method of maximum likelihood estimation16, 18, 19. Assuming that each measurement 

of N n follows a Gaussian distribution, this leads to determining the least squares of N n by 

minimizing

M=∑
n

[N n
obs−N n]2

N n
obs 

2 (4.3)

where N n
obs is the observed count in each time bin, N n is the calculated count at each time bin, 

n, according to Equation 4.2 and N n
obs is the standard error in each measurement of N n

obs . 

Conceptually, this would require taking the partial derivatives of the unknowns, N bg , N 0 ,0 , with 

respect to M, setting them to 0, and solving as in Equation 4.4.

∂M
∂N bg

= ∂M
∂ N 0

=∂ M
∂0

=0 (4.4)

Subsequently, the errors in the three parameters can be determined, by finding the inverse Hessian 
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matrix16, 18, 19. However, given the nonlinearity of N(n), numerical methods20 have to be employed to 
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Figure 4.1: Data points plotted and fitted against Equation 4.2, along with the residual. Note the initial  
low counts at the beginning as the timing gate opens and the tapering to 0 after 190 bins as the gate 
closes. Because of the relatively small errors of the counts, the error bars are hard to see.



determine the best fit. Using the Matlab curve-fitting implementation of the Trust-Region algorithm21 

for robust least squares22 the three parameters are found to be

N bg=123±9
N 0=2.949±0.006×105

0=2.197±0.006s
(4.5)

The standard deviations in these results are due to the numerical method. 

The error of the lifetime due to the physical system would still need to be worked out using 

quadrature of error propagation. Developing from Equation 4.1, the error in the width of the time bin is

w=∂w
∂T

T
2

 ∂w
∂ N B

 N B
2

∂w
∂F

 F
2

≈∂w
∂T

T 
2

 ∂w
∂N B

 N B
2

= 1
nB − N B

F 2T 2 T 
2

 1
F 2T

N B
2

(4.6)
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Figure 4.2: Linear fit to the single exponential approximation according to Equation 
4.7. Also hardly visible error bars here.



Due to the difficulty in working out the error propagation for the nonlinear Equation 4.2, its 

approximation, Equation 3.10 is referred to instead, in terms of time bins

ln N i ' =ln N 0 ' −eff wn (4.7)

Noting that N i ' follows a Poisson distribution, its error is N i '=N i ' . Using Equation A.3 to 

find the error in the slope of Equation 4.7, B=−eff w , and applying quadrature gives the physical 

error in eff as

eff=w
B 

2

 w
B2  B

2

(4.8)

The error in 0=eff−c /1 is

0= ∂0

∂eff
eff 

2

∂0

∂c
c

2

∂0

∂


2

= eff 
2
− 1

1
c

2

− c

12  r
2

(4.9)

giving the physical error in 0 as

0=
1
0

2 0=0.036s (4.10)

Combining this physical error with the result in (4.5) gives

0=0±0
±0

=2.197±0.006±0.036s
(4.11)

which is within 1.9% relative error.

A chi-square test23 is performed to ascertain the goodness-of-fit of the parameters to the 

data.  The test statistic is calculated to be
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c=∑
n

N n
obs−N n2

N n
=186.7549 (4.12)

Since bins 8 to 191 were used to fit the curve, 184 bins were considered. There are three parameters, so 

the degrees of freedom is =n−k−1=184−3−1=180 . The chi-square probability is then

P 1− , 180
2 c≈65.05% (4.11)

which is quite low, meaning that the double exponential fit is very good and so are the estimated 

parameters.

6. Conclusion

The lifetime determined in this experiment, 0=2.197±0.0006±0.0036s , has a relative 

error of under 2%, making it quite precise. Moreover, it in very good agreement with the accepted 

value 0=2.19703±0.00004s 7, substantiating its accuracy. However, there were some uncertainties 

which were not settled. The exact chemical composition of the scintillator was not known, so the 

detailed capture rate of the negative muons could be inaccurate. Also, the positive/negative muon ratio 

was not measured at the lab, so its exact value is also unknown, resulting in a reliance on a ratio9 that is 

not necessarily valid.
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