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Based on some classic experiments" >, the lifetime of the muon is investigated using a
scintillation method, with coincidence counting. Passing muons from cosmic showers
that are stopped in the scintillator decay and their decay times measured in time bins of
width w=0.1009+0.0018 us . However, due to the capture rate of negative muons in the
scintillator, and the non-unity ratio between positive and negative muons, the decay curve
is not a simple exponential, but a double exponential distribution. Having collected data
over about 600 hours, a nonlinear fit was made and the value of the lifetime along with its
numerical error due to the numerical method determined. Using a linear fit of the simple
single-exponential approximation of the decay, the errors due to physical sources was
also ascertained. These give the value of the muon lifetime in vacuum as

T9=2.197£0.006+0.036 u's .

1. Introduction

Discovered by Neddermeyer and Anderson, and Street and Stevenson in 1937*, the muons
have become an important in high energy physics explaining the electroweak theory’. Their presence at
sea level also demonstrates the validity of special relativity. Being created in the upper atmosphere,
they speed towards the earth's surface near the speed of light as they decay with a lifetime much shorter
than the time it takes for them to reach the surface. Yet their detection indicates the effects of time

dilation such that their decay is slowed down as they travel at high speeds.



Muons are created when cosmic showers hit the upper atmosphere of the earth. When a
high speed proton collides with a nucleus, it produces a myriad of mesons, some of them positive and

negative pions. These pions subsequently decay to form the muons and neutrinos (see Figure 1.1)
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Figure 1.1: Cosmic ray shower as muon source in the atmosphere’
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Muons can decay via a few paths, but almost all of them decay into an electron and two neutrinos”

according to Equation 1.1.
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The neutrinos are produced according to lepton number conservation. Due to the difference in the

number of positive and negative pions in the atmosphere, the ratio of positive to negative muons is also

not unity. As described by Dorman’, its value depends on the momentum of the muons by the equation
p=N.,/N_=1.268+(0.008+0.0002p) (1.2)

where p is measured in GeV. For this experiment, since only muons that have stopped have their

decays detected, it is assumed that p = 0 here.



2. Description of Apparatus

The muons are detected using 9 flat plastic scintillators sheets, each connected to a
photomultiplier tube (PMT) to detect the scintillation that occurs when the plastic is excited'’. This
happens when muons pass through the scintillator, or when a muon that has stopped in the scintillator
undergoes decay and emits an electron. The photomultipliers (PMs) are powered by two synchronized
Hewlett Packard Harrison 6516A DC Power Supply JIO, operating at 0-3500V and 0-5MA. They are
connected to the LeCroy Research Systems, Model 121 Discriminator, that counts the occurrances of
the aforementioned two events. When the scintillator is activated, the PMs send out a negative pulse,
which is passed through a comparator and converted to a positive square pulse. This helps to
distinguish an excitation from the background electronic noise intrinsic in the scintillator and circuit.

The circuit is set up to attempt to detect series of two pulses, using coincidence counting
techniques, further elaborated by Leo'' and Melissinoss'*. When a muon passes through the scintillator,
and ultimately generates the square pulse, Scaler 1, a set of LEDs, increments its count. After about
0.5us, a timer, running off a 10MHz clock, is then started to wait for the detection of the second pulse
This could be from the decay of a stopping muon or from the background. The timer increments at
every clock cycle for up to 250 cycles. If the second pulse is detected, Scaler 2, another set of LEDs,
increments its count, and a signal is sent to the serial interface of the IBM Personal Computer XT.

This signal tells during which of the 250 cycles the second pulse was detected. The
observed duration after the first pulse, is thus divided into 250 time bins of roughly 0.1pus in width. If
the pulse is due to a decay electron, that would contribute to the exponential curve, but if its due to
another muon passing through the scintillator within 2.5us of the first, or some other excitations, then
that would contribute to the background.

Calibration is required for the voltage to the Pms, for reasons explained by Leo'. If the



voltage is too low, the PMs would not be sensitive enough to detect all excitations in the scintillators. If
the voltage is too high, then noise from the equipment would drastically increase the counts causing a
serious systematic error. Measuring Scaler 1 counts with respect to PM voltage gives rise to Figure E.1.
The insensitive part occurs before the plateau and the over-amplified portion after. The best operating
voltage is at the middle of the plateau, which is estimated, from Figure E.2, to be 1.005V for the
present set-up.

It should be noted that due to the charge of the negative muons, they can approach quite
closely to the nuclei with appreciably large atomic numbers>®* '*'* 1> In the case of plastic scintillators
which are mainly composed of carbon atoms, the negative muons can get close enough to the carbon

nuclei to bond with them, forming boron nuclei and a neutrino as described in Equation 2.1.
p +C—-B+v, (2.1)

Eventually, the boron would decay into a carbon atom and electron which would contribute to the

background. This does not happen for positive muons due to electrostatic repulsion from the nuclei.

3. Theory
Assuming that the rate of decay is constant, a single decay process is defined by

anN _

AN
" (3.1)

where A is the rate of decay, related to the lifetime by T=1/A | and N is the instantaneous number of
particles . Integrating this with respect to time gives the relation

N=N,e™ (3.2)
where N, is the initial particle count. Within the time interval ( ¢, +A¢) the number of particles that

decay are
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Equation 3.3 holds for positive muons, but not for negative muons because of Equation 2.1. Due to this

nuclear capture, there is a capture rate associated with negative muons, such that its decay becomes
N_=(Nye™)e M= N, e (3.4)
where A. is the capture rate due to muon loss through bonding. Mukhopadhyay et al combines results
from several observations to arrive at the value'
A,=3.76+0.04x10*s™" (3.5)
Since the counts are contributed to by the decays of the positive and negative, and the
background, its decay is
AN(6)=N,,+(A, N, e +A_N_e™ |w (3.6)
where there is a notational change of w=At¢; A, and N, are the decay rate and number of positive

muons, while A_ and N_ are the decay rate and number of negative muons, respectively. It has been
experimentally noted that positive and negative muons do not exist equally in the atmosphere and their

ratio depends on their momentum and the altitude® '?. Substituting Equations 1.2 into 3.6 gives

AN (n)=N, + Nov; e_A°W"[A0(p+e_A‘W")+AC e_ALW"] (3.7)

where Ag=A, is the lifetime in free space, of which the positive muons maintain, and p=N_./N _is the
muon ratio. Here wn = ¢, considering time split into » time bins with width w.

If sufficient data is collected, it can be fitted to Equation 3.7 with parameters N, , N and
Ao . Otherwise, the exponentials would have to be approximated to a single one. Starting with Equation

3.6, and taking Taylor expansions, one can derive Equation 3.8, the effective single exponential decay.
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We differentiate Equation 3.8 to map it to the data.
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Thus the effective lifetime is T,y =1/A;, where A, =A,+ ﬁ , from which the lifetime in empty

space can be estimated. Equation 3.8 can be rewritten in linear form as
In(AN,")=In(N,")=A,t (3.10)

where AN,'=N ;=N and N,'=N.(1+1/p)(A,+A/(1+p)).

4. Data

Data was collected over about 600 hours with 4 samples, their durations noted along with

the Scaler 1 and 2 counts at the end of each run. The times between scintillator pulses are recorded in



text files labeled by dates, as shown in Table 4.1. Printouts of the data files are in Appendix B.

Due to overflow, the scaler 2 counts are lower than expected, but the actual value can be
retrieved by knowing the overflow rate. However, this is not important, as the values can be obtained
from summing the counts recorded in each data file. Since Scaler 2 has only 4 digits, it has a significant
overflow rate, which when accounted for reveals a discrepancy between the recorded second pulses by
the computer and by the circuit, possibly due to some circuitry unreliability. In each data file, the muon

count during decay is distributed into 255 time bins of about 0.1ps.

Run 1 2 3 4
Duration (s) 423399 £ 1 153504 +1 1036965+1 536912 +1
Scaler 1 reading, S, 10032301 3614150 25081541 12881573
Scaler 2 reading 8491 6302 6976 9851
Scaler 2 count, S, 45580 16262 116645 59670
Data file octl2.txt octld.txt oct26.txt novO0l.txt

Table 4.1: Data collected

5. Data Analysis

To work out the lifetime with respect to time, ¢, the time bin independent variable, n, has to
be scaled with the bin width, w, which has to be determined. This is be calculated by counting the
number of scintillator excitations in the background of the decay. It is assumed that this background is
contributed to by the flux of muons passing through the scintillator 7' = §,/T, where S; is the Scaler 1
count after the duration, T, of an experiment run. Fitting the line 7=(1/F)S to Table 4.1, and finding
the slope, using the technique of weighted least squares described in Appendix A, gets /'=24.3396 Hz,
with negligible error since the error in 7' is extremely small. Choosing time bins 160 to 190, for which
to consider the background contribution, sets the bin count n; = 31, and the excitation count N,, = 3985.

Each time a muon passes through the scintillator, a gate opens to wait for the second PM pulse, either



due to the decay electron or background muon. In the total duration 7, this happens S; number of times.
In the time ¢ = nw, there should be Ff muons passing through the scintillator, where #; is the number of
bins considered for the background. So, for the whole experiment, the number of counts due to
background is N ,=F ¢ S,=F’nyw/T . Rearranging would give the expression for the width of the time

bins

4.1)

With 238157 counts during decay, the data is of a high enough quality to attempt a

nonlinear fit'” to the explicit form of Equation 3.7, with the substitution T,=1/A,

wn
NOW T, 1 )\(wn)

—lp+e™ " +A e " .
1+pe To(p e € (4.2)

AN(n)=N,+

This is done via the method of maximum likelihood estimation'® ' ", Assuming that each measurement
of AN, follows a Gaussian distribution, this leads to determining the least squares of A N (n) by

minimizing

(obs)_ 2
vy V=N ] )

O ioss)
Nn

where A N ff *) is the observed count in each time bin, A N (n) is the calculated count at each time bin,

(obs)

n, according to Equation 4.2 and O e 1s the standard error in each measurement of N
Conceptually, this would require taking the partial derivatives of the unknowns, N,,, Ny, A, , with
respect to M, setting them to 0, and solving as in Equation 4.4.

oM _ oM _oM _
ON, 0N, oA,

(4.4)

Subsequently, the errors in the three parameters can be determined, by finding the inverse Hessian



Monlinear fit to Muon Decay Data
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Figure 4.1: Data points plotted and fitted against Equation 4.2, along with the residual. Note the initial

low counts at the beginning as the timing gate opens and the tapering to 0 after 190 bins as the gate

closes. Because of the relatively small errors of the counts, the error bars are hard to see.

matrix'® ', However, given the nonlinearity of N(n), numerical methods®® have to be employed to



determine the best fit. Using the Matlab curve-fitting implementation of the Trust-Region algorithm?'

for robust least squares® the three parameters are found to be

N,,=123+9
N,=(2.949+0.006)x 10’ (4.5)
7,=2.197+0.006 us

The standard deviations in these results are due to the numerical method.
The error of the lifetime due to the physical system would still need to be worked out using

quadrature of error propagation. Developing from Equation 4.1, the error in the width of the time bin is
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Figure 4.2: Linear fit to the single exponential approximation according to Equation
4.7. Also hardly visible error bars here.

10



Due to the difficulty in working out the error propagation for the nonlinear Equation 4.2, its

approximation, Equation 3.10 is referred to instead, in terms of time bins
In(AN,")=In(AN,")=(A;w)n 4.7)

Noting that A N, ' follows a Poisson distribution, its erroris 6 AN’ =\/TNI-' . Using Equation A.3 to

find the error in the slope of Equation 4.7, § B=6(—A,;w) , and applying quadrature gives the physical

eITor in Ty as

5reﬂ=J(%W) +(§53) (45)

—70)261/) 4.9)

giving the physical error in T, as

1
51'0:?5?\0:0.036[15 (410)

0

Combining this physical error with the result in (4.5) gives

Ty=To*0,*0T,

4.11
=2.197+0.006 =0.036 us “1D)

which is within 1.9% relative error.

t23

A chi-square test™ is performed to ascertain the goodness-of-fit of the parameters to the

data. The test statistic is calculated to be

11



(V"= ()]
N (n)

=186.7549 (4.12)

Since bins 8 to 191 were used to fit the curve, 184 bins were considered. There are three parameters, so
the degrees of freedom is v=n—k—1=184—3—1=180 . The chi-square probability is then
P(X]_, 1s0>¢)~65.05% (4.11)
which is quite low, meaning that the double exponential fit is very good and so are the estimated
parameters.
6. Conclusion

The lifetime determined in this experiment, T,=2.197+0.0006+£0.0036 us , has a relative
error of under 2%, making it quite precise. Moreover, it in very good agreement with the accepted
value 7,=2.19703=0.00004 s 7, substantiating its accuracy. However, there were some uncertainties
which were not settled. The exact chemical composition of the scintillator was not known, so the
detailed capture rate of the negative muons could be inaccurate. Also, the positive/negative muon ratio

was not measured at the lab, so its exact value is also unknown, resulting in a reliance on a ratio’ that is

not necessarily valid.
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